项目名称: 非局部边值问题的特征值及其应用
项目编号: No.11501165
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王方磊
作者单位: 河海大学
项目金额: 18万元
中文摘要: 微分方程的非局部问题来源于对力学、人口学、医学以及燃烧理论等领域的研究,因此对非局部问题的研究是一个重要的课题。本项目旨在利用微分方程、动力系统、非线性分析的多个分支,包括:定性理论;特征值理论;核函数理论;变分法和拓扑度等,研究微分方程的非局部问题:1.对非局部微分方程的周期解的存在性、多重性和解的精确估计进行深入研究,给出此类问题的启发性研究思路;2.由于奇异方程在研究稳定性问题时发挥重要作用,我们还将对此进行独立研究,并给出一些典型的非线性奇异方程周期解解的存在性、多重性结果和解对参数的依赖性;3.研究微分方程在非局部边界条件下的特征值,并给出一些应用。我们的目标是经过努力,初步形成有一定特色的研究思路和体系。
中文关键词: 非局部边值问题;特征值;周期解;奇异问题;非线性分析
英文摘要: Nonlocal problems of differential equations, derived from the research on Mechanics, Demographic, Medical science, Combustion theory and other fields, have become an important topic nowadays. Our project aims to study some nonlocal problems of differential equations based on multiple branches of Differential Equations and Nonlinear Analysis, including Qualitative theory, Eigenvalue theory, Kernel function theory, Variational method, Topological degree and so on. 1. Show some ideas which is useful to study the existence ,multiplicity and estimate of periodic solutions of nonlocal differential equations ;2 because the singular equation is very important to the study on stability of differential equation, we will study this equation independently, and give some existence, multiplicity results and solution dependent on parameters and its estimation. 3.Describe the eigenvalues and spectrum of nonlocal boundary conditions, and give some applications. Through the efforts our goal is the initial formation of a certain characteristic of research ideas and systems.
英文关键词: Nonlocal boundary value problems;Eigenvalues;Periodic solution;Singular problems;Nonlinear analysis