图机器学习峰会PPT来了!

2021 年 10 月 14 日 图与推荐

10月10日,DataFun联合推荐与图举办的DataFunSummit:图机器学习成功举办,经过几天的催稿,今天小编终于给大家带来了本次峰会的PPT下,我们来看看都有哪些PPT吧(PPT限时下载,想下载的小伙伴抓紧!):


各论坛






有哪些PPT






下载方式



加入下面的QQ群,在群文件里下载。


登录查看更多
2

相关内容

图机器学习(Machine Learning on Graphs)是一项重要且普遍存在的任务,其应用范围从药物设计到社交网络中的友情推荐。这个领域的主要挑战是找到一种表示或编码图结构的方法,以便机器学习模型能够轻松地利用它。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
图表示学习在药物发现中的应用,48页ppt
专知会员服务
98+阅读 · 2021年4月30日
【WSDM2021-Tutorial】偏见感知推荐系统的进展,134页ppt
专知会员服务
49+阅读 · 2021年3月9日
【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
71+阅读 · 2021年3月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
175+阅读 · 2020年4月12日
直播预告 | 大规模图机器学习框架&算法
图与推荐
0+阅读 · 2021年10月9日
直播预告 | 从GNN的视角出发,重新审视推荐系统
图与推荐
0+阅读 · 2021年10月6日
DGL&NVIDIA | 图机器学习在线讲座
图与推荐
0+阅读 · 2021年9月30日
直播预告 | 图机器学习在线峰会
图与推荐
0+阅读 · 2021年9月25日
图表示学习在药物发现中的应用,48页ppt
专知
1+阅读 · 2021年4月30日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年9月5日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2020年7月13日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
图表示学习在药物发现中的应用,48页ppt
专知会员服务
98+阅读 · 2021年4月30日
【WSDM2021-Tutorial】偏见感知推荐系统的进展,134页ppt
专知会员服务
49+阅读 · 2021年3月9日
【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
71+阅读 · 2021年3月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
175+阅读 · 2020年4月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
3+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年9月5日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2020年7月13日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Top
微信扫码咨询专知VIP会员