Myocardial infarction (MI) is the leading cause of mortality and morbidity in the world. Early therapeutics of MI can ensure the prevention of further myocardial necrosis. Echocardiography is the fundamental imaging technique that can reveal the earliest sign of MI. However, the scarcity of echocardiographic datasets for the MI detection is the major issue for training data-driven classification algorithms. In this study, we propose a framework for early detection of MI over multi-view echocardiography that leverages one-class classification (OCC) techniques. The OCC techniques are used to train a model for detecting a specific target class using instances from that particular category only. We investigated the usage of uni-modal and multi-modal one-class classification techniques in the proposed framework using the HMC-QU dataset that includes apical 4-chamber (A4C) and apical 2-chamber (A2C) views in a total of 260 echocardiography recordings. Experimental results show that the multi-modal approach achieves a sensitivity level of 85.23% and F1-Score of 80.21%.
翻译:心肌梗塞(MI)是造成全世界死亡和发病的主要原因。MI的早期治疗可以确保防止进一步出现心肌梗塞。心血管造影是能够揭示MI最早迹象的基本成像技术。然而,用于MI检测的回声心血管数据集稀缺是培训数据驱动分类算法的主要问题。在本研究中,我们提出了一个框架,用于在多视回声心血管学中早期检测MI,利用一等技术。OCC技术用于培训一种模型,用于仅从该特定类别中检测特定目标类别。我们利用HMC-QU数据集调查拟议框架中单式和多模式单级分类技术的使用情况,该数据集包括总共260个回声心血管学记录中的4-焦(A4C)和2-焦(A2C)观点。实验结果表明,多模式方法达到了85.23%的敏感度和80-21 %的F1-Scor%的敏感度。