项目名称: 超导问题中动态金兹堡-朗道方程的高效计算方法
项目编号: No.11501227
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 高华东
作者单位: 华中科技大学
项目金额: 18万元
中文摘要: 超导材料在工业生产中具有重要的应用价值。动态金兹堡-朗道(time-dependent Ginzburg-Landau)方程组是一个描述超导现象的重要方程组。该方程组是抛物型的且具有极强的非线性耦合,其性质复杂、理论分析困难,开发高效数值方法及严格论证算法收敛性和稳定性具有重要意义。本项目将致力于研究动态Ginzburg-Landau方程组的高效线性化有限元方法。我们将探索新的路径,期望能够发展新的数值方法来高精度快速的解出序参数ψ,诱导磁向量势 A 以及磁场 curl A 等物理量。我们将对新的数值方法做严格的稳定性和收敛性分析。我们期望通过本项目的研究为动态超导方程的数值求解提供新的高效方法。
中文关键词: 超导问题;金兹堡-朗道方程;有限元方法;高效算法;最优误差估计
英文摘要: The time-dependent Ginzburg-Landau (TDGL) model has been used extensively in the study of superconductors. The numerical simulation of this model requires reliable and efficient methods. Due to the strong nonlinearity and coupling of unknowns, numerical methods for the TDGL equations are full of challenges. In this research project, the investigator will try to design efficient numerical methods to solve the TDGL equations. In particular, we will develop fast and accurate schemes to compute magnetic field curl A. Most previous works focused on solving ψ and A,and then use numerical differentiation to compute curl A. In this project, we try to provide a new numerical approach to compute the three variables ψ, A and curl A directly. We will use finite element approximations in spatial direction and linearized schemes in temporal direction, respectively. Rigorous stability and convergence analysis will be conducted. This research project may provide new and efficient methods for the computation of the TDGL equations.
英文关键词: superconductivity;Ginzburg-Landau equations;finite element methods;efficient algorithm;optimal error estimates