深度学习目前最流行的框架是Tensorflow和PyTorch,市面上讲解Tensorflow的实战教材很多,但关于PyTorch的书却很少。今天给大家推荐一本2019年最新出炉的新书《PyTorch实战 - 一个解决问题的方法》。本书内容很新,由浅入深,全面讲解了如何基于PyTorch框架搭建深度学习模型,进行模型部署的方方面面,是一本不可多得的PyTorch入门书籍。

本书介绍

人工智能产品和解决方案的开发最近已经成为一种常态;因此,对基于图论的计算框架的需求正在上升。当建模框架是动态的、灵活的,并且能够适应其他框架时,让深度学习模型在实际应用中工作是可能的。

PyTorch最近加入了图形计算工具/编程语言联盟。针对以前框架的局限性,PyTorch承诺在部署深度学习模型以及使用卷积神经网络、递归神经网络、LSTMs和深度神经网络的组合创建高级模型方面提供更好的用户体验。PyTorch是由Facebook的人工智能研究部门创建的,该部门旨在使模型开发过程简单、直接、动态,这样开发人员就不必担心在编译和执行模型之前声明对象。它基于Torch框架,是Python的扩展。

这本书面向数据科学家、自然语言处理工程师、人工智能解决方案开发人员、从事图形计算框架的现有从业人员以及图论研究人员。这本书主要讲解张量(Tensor)的基础知识、计算、执行基于算术的运算、矩阵代数和使用PyTorch框架的基于统计分布式运算。

第3章和第4章提供了关于神经网络基础知识的详细描述。探索先进的神经网络,如卷积神经网络、递归神经网络和LSTMs。读者将能够使用PyTorch函数实现这些模型。第5章和第6章主要讲解模型的微调、超参数调整以及生产环境中如何对现有PyTorch模型进行改进。读者将学习如何选择超级参数来微调模型。第7章主要讲解自然语言处理相关的应用。深度学习模型及其在自然语言处理和人工智能中的应用是该行业最苛刻的技能之一。读者将能够在深度学习模型中对PyTorch实现的执行和性能进行测试,以执行和处理自然语言。能够将PyTorch与其他基于图形计算的深度学习编程工具进行比较。
成为VIP会员查看完整内容
0
64

相关内容

PyTorch是Facebook于2017年初在机器学习和科学计算工具Torch的基础上,针对Python语言发布的一个全新的机器学习工具包,一经推出便受到了业界的广泛关注和讨论,目前已经成为机器学习从业人员的研发工具。

《PyTorch深度学习》是使用PyTorch构建神经网络模型的实用指南,内容分为9章,包括PyTorch与深度学习的基础知识、神经网络的构成、神经网络的知识、机器学习基础知识、深度学习在电脑视觉中的应用、深度学习在序列数据和文本中的应用、生成网络、现代网络架构,以及PyTorch与深度学习的未来走向。

《PyTorch深度学习》适合对深度学习领域感兴趣且希望一探PyTorch的业内人员阅读;具备其他深度学习框架使用经验的读者,也可以通过本书掌握PyTorch的用法。

Vishnu Subramanian在领导、设计和实施大数据分析项目(人工智能、机器学习和深度学习)方面富有经验。

擅长机器学习、深度学习、分布式机器学习和可视化等。 在零售、金融和旅行等行业颇具经验,还善于理解和协调企业、人工智能和工程团队之间的关系。

成为VIP会员查看完整内容
0
50

这本书是为任何想学习如何开发机器学习系统的人准备的。我们将从理论和实践两方面涵盖关于机器学习算法的最重要概念,并将使用Python编程语言中的Scikit-learn库实现许多机器学习算法。在第一章中,您将学习机器学习最重要的概念,在下一章中,您将主要学习分类。在最后一章中,你将学习如何训练你的模型。我假定你已经了解了编程的基础知识。

成为VIP会员查看完整内容
0
58

学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
55

这本书是为那些有一些机器学习和深度学习的理论知识,并想深入应用机器学习的人准备的。这本书没有解释算法,而是更侧重于如何以及应该用什么来解决机器学习和深度学习问题。如果你正在寻找纯粹的基础知识,这本书不适合你。如果你正在寻找接近机器学习问题的指导,这本书是为你准备的。喝杯咖啡,在笔记本电脑/工作站里编写代码时,最好能读读这本书。

目录内容:

  • 搭建工作环境
  • 监督学习与非监督学习 ——交叉验证 ——评价指标
  • 安排机器学习项目
  • 接近分类变量 ——特征工程 ——特征选择 ——Hyperparameter优化
  • 图像分类和分割
  • 文本分类/回归
  • 集成和堆叠
  • 可复现代码和模型服务

地址: https://github.com/abhishekkrthakur/approachingalmost

成为VIP会员查看完整内容
0
27

自然语言处理(NLP)为解决人工智能方面的问题提供了无限的机会,使Amazon Alexa和谷歌翻译等产品成为可能。如果您是NLP和深度学习的新手,那么本实用指南将向您展示如何使用PyTorch(一个基于python的深度学习库)应用这些方法。

作者Delip Rao和Brian McMahon为您提供了关于NLP和深度学习算法的坚实基础,并演示了如何使用PyTorch构建应用程序,其中包含针对您所面临问题的文本的丰富表示。每一章包括几个代码示例和插图。

  • 探索计算图表和监督学习范式
  • 掌握PyTorch优化张量操作库的基础知识
  • 对传统的NLP概念和方法进行概述
  • 学习建立神经网络的基本概念
  • 使用嵌入来表示单词、句子、文档和其他特性
  • 探索序列预测并生成序列对序列模型
  • 学习构建生产NLP系统的设计模式

https://www.oreilly.com/library/view/natural-language-processing/9781491978221/

成为VIP会员查看完整内容
0
69

使用高级架构开发和优化深度学习模型。这本书教你错综复杂的细节和微妙的算法,是卷积神经网络的核心。在高级应用深度学习中,您将学习CNN的高级主题和使用Keras和TensorFlow的对象检测。

在此过程中,您将了解CNN中的基本操作,如卷积和池化,然后了解更高级的架构,如inception networks、resnets等等。当这本书讨论理论主题时,你会发现如何有效地与Keras工作,其中有许多技巧和提示,包括如何用自定义回调类自定义Keras登录,什么是迫切执行,以及如何在你的模型中使用它。最后,您将学习对象检测是如何工作的,并在Keras和TensorFlow中构建YOLO(只查看一次)算法的完整实现。在书的最后,你将实现各种各样的模型在Keras和学习许多高级技巧,将把你的技能到下一个水平。

你将学到什么

  • 看看卷积神经网络和目标检测是如何工作的
  • 在磁盘上的权值和模型
  • 暂停训练,在稍后的阶段重新开始
  • 在代码中使用硬件加速
  • 使用数据集TensorFlow抽象和使用预先训练的模型和迁移学习
  • 删除和添加层到预先训练的网络,使其适应您的特定项目
  • 将预先训练好的模型(如Alexnet和VGG16)应用到新的数据集

这本书是给谁的

  • 拥有中级到高级Python和机器学习技能的科学家和研究人员。此外,还需要Keras和TensorFlow的中级知识。
成为VIP会员查看完整内容
0
77
小贴士
相关主题
相关VIP内容
专知会员服务
50+阅读 · 4月3日
专知会员服务
55+阅读 · 2月25日
专知会员服务
69+阅读 · 2020年10月30日
专知会员服务
53+阅读 · 2020年8月7日
专知会员服务
77+阅读 · 2020年6月20日
专知会员服务
110+阅读 · 2020年6月15日
相关资讯
网易云课堂独家 | 基于PyTorch实现的《深度学习》
深度学习与NLP
6+阅读 · 2019年2月15日
手把手教 | 深度学习库PyTorch(附代码)
数据分析
5+阅读 · 2018年3月20日
从基础概念到实现,小白如何快速入门PyTorch
机器之心
5+阅读 · 2018年2月26日
荐书丨深度学习框架PyTorch:入门与实践
程序人生
7+阅读 · 2018年1月19日
荐书丨深度学习入门之PyTorch
程序人生
10+阅读 · 2017年12月1日
相关论文
Benjamin Billot,Douglas Greve,Koen Van Leemput,Bruce Fischl,Juan Eugenio Iglesias,Adrian V. Dalca
0+阅读 · 4月8日
Deep Co-Training for Semi-Supervised Image Segmentation
Jizong Peng,Guillermo Estrada,Marco Pedersoli,Christian Desrosiers
3+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Aravind Rajeswaran,Chelsea Finn,Sham Kakade,Sergey Levine
7+阅读 · 2019年9月10日
Wei-Lin Chiang,Xuanqing Liu,Si Si,Yang Li,Samy Bengio,Cho-Jui Hsieh
9+阅读 · 2019年8月8日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick
7+阅读 · 2018年1月24日
William W. Cohen,Fan Yang,Kathryn Rivard Mazaitis
6+阅读 · 2017年7月17日
Top