项目名称: 多复变函数空间上(加权)复合算子的动力学性质
项目编号: No.11301373
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 曾红刚
作者单位: 天津大学
项目金额: 22万元
中文摘要: 本项目致力于研究多复变函数空间上(加权)复合算子的动力学性质。具体而言,我们将讨论单位超球、单位多圆柱、C^n以及拟凸域上全纯函数构成的Hilbert空间、Banach空间以及更一般的拓扑向量空间上的(加权)复合算子的H-循环性、S-循环性、混合性、混沌、F-H-循环性以及H-循环算子的不相交性等问题。本项目属于多复变函数论、复合算子理论以及线性动力系统等多学科的交叉课题,所涉及的问题是目前国内外数学工作者研究的前沿热点课题,在理论上和应用上均具有重要意义。
中文关键词: 函数空间;复合算子;线性动力系统;H-循环性(超循环性);不相交性
英文摘要: This project is dedicated to the dynamic properties of (weighted) composition operators on the function spaces of several complex variables. More precisely, we will study the the hypercyclicity, supercyclicity, mixing, chaoticity, frequently hypercyclicity of (weighted) composition operators and disjointness of hypercyclic composition operators which act on a Banach or Hilbert space of analytic functions in the unit ball or unit polydisc of C^n, and more generally on the topological vector space consisting of analytic functions on C^n or pseudoconvex domains of C^n, endowed with the compact open topology. This project is a intersectant subject of multicomplex function theory and operator theory and linear dynamic system. The issue what we will deal with is not only a hot topic which is studied by domestic and international mathematics researchers but also of great significance in the theory and application.
英文关键词: function spaces;composition operators;linear dynamic system;hypercyclicity;disjointness