主题: Weakly-Supervised Salient Object Detection via Scribble Annotations
摘要: 与费力的逐像素密集标记相比,这种方法更容易通过涂抹来标记数据,仅花费1-2秒即可标记一张图像。然而,尚未有人探索使用可划线标签来学习显着物体检测。在本文中,我们提出了一种弱监督的显着物体检测模型,以从此类注释中学习显着性。为此,我们首先使用乱码对现有的大型显着物体检测数据集进行重新标记,即S-DUTS数据集。由于对象的结构和详细信息不能通过乱写识别,因此直接训练带有乱写的标签将导致边界位置局限性的显着性图。为了缓解这个问题,我们提出了一个辅助的边缘检测任务来明确地定位对象边缘,并提出了门控结构感知损失以将约束置于要恢复的结构范围上。此外,我们设计了一种涂鸦增强方案来迭代地整合我们的涂鸦注释,然后将其作为监督来学习高质量的显着性图。我们提出了一种新的度量标准,称为显着性结构测量,用于测量预测显着性图的结构对齐方式,这与人类的感知更加一致。在六个基准数据集上进行的大量实验表明,我们的方法不仅优于现有的弱监督/无监督方法,而且与几种完全监督的最新模型相提并论。