题目: Continual Learning of Object Instances
摘要: 我们建议实例持续学习——一种将持续学习的概念应用于区分相同对象类别的实例的任务的方法。我们特别关注car对象,并通过度量学习逐步学会区分car实例与其他实例。我们从评估当前的技术开始我们的论文。在现有的方法中,灾难性遗忘是显而易见的,我们提出了两个补救措施。首先,通过归一化交叉熵对度量学习进行正则化。其次,我们使用合成数据传输来扩充现有的模型。我们在三个大型数据集上进行了大量的实验,使用了两种不同的体系结构,采用了五种不同的持续学习方法,结果表明,标准化的交叉熵和合成转移可以减少现有技术中的遗忘。