论文题目:Deep Safe Multi-view Clustering: Reducing the Risk of Clustering Performance Degradation Caused by View Increase.

作者:唐华镱,刘勇

通讯作者:刘勇

论文概述:多视图聚类通过挖掘多个视图的互补信息来提高聚类性能。然而,我们观察到视图数量的增加并不总能确保提高模型的聚类效果。为此,我们提出了一个基于深度学习的通用框架以降低视图增加带来的聚类性能下降的风险。具体地,该模型需要通过自动选择来自不同视图的特征来同时挖掘互补信息和去除无意义的噪声。这两个学习过程通过提出的双层优化目标被集成到统一的框架。在理论上,该框架的经验聚类风险不高于在视图增加前的数据和新增加的单视图数据上的经验聚类风险。

同时,在基于散度的聚类损失下,该框架的期望聚类风险以高概率不高于在视图增加前的数据和新增加的单视图数据上的期望聚类风险。在基准多视图数据集上的综合实验证明了该框架在实现安全多视图聚类上的有效性和优越性。

成为VIP会员查看完整内容
9

相关内容

CVPR 2022 将于2022年 6 月 21-24 日在美国的新奥尔良举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【WWW2022】互信息压缩的紧凑图结构学习
专知
2+阅读 · 2022年1月17日
NeuralPS'20 | Graph Meta Learning via Local Subgraphs
图与推荐
3+阅读 · 2021年10月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
31+阅读 · 2021年3月29日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员