In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.


翻译:鉴于近年来在建议系统研究和若干丰硕成果中出现了深入强化学习(DRL),本调查旨在及时、全面地概述推荐系统中深入强化学习的近期趋势,我们首先从在推荐系统中应用DRL的动机出发,然后提供当前基于DRL的建议系统分类和现有方法的概要,我们讨论新出现的问题和开放问题,并就推进这一领域提出我们的观点,本调查为学术界和工业界的读者提供了介绍性材料,并确定了进一步研究的显著机会。

14
下载
关闭预览

相关内容

深度强化学习 (DRL) 是一种使用深度学习技术扩展传统强化学习方法的一种机器学习方法。 传统强化学习方法的主要任务是使得主体根据从环境中获得的奖赏能够学习到最大化奖赏的行为。然而,传统无模型强化学习方法需要使用函数逼近技术使得主体能够学习出值函数或者策略。在这种情况下,深度学习强大的函数逼近能力自然成为了替代人工指定特征的最好手段并为性能更好的端到端学习的实现提供了可能。
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
53+阅读 · 2018年12月11日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Top
微信扫码咨询专知VIP会员