Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US) and major anatomical structures of interest (ventricles, atria and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research.
翻译:近些年来,深层学习已成为最广泛使用的心脏图象分割法。在本文中,我们利用深层学习来审查100多份心脏图象分割法文件,其中包括常见成像模式,包括磁共振成像(MRI)、计算断层成像(CT)、超声波(US)和引起关注的主要解剖结构(静态、阿提里亚和船只)。此外,还包括公开提供的心像数据集和代码储存库摘要,为鼓励进行可复制的研究提供了一个基础。最后,我们讨论了当前深层学习方法(标签的特性、不同领域的模型可理解性、可解释性)的挑战和局限性,并提出了未来研究的潜在方向。