深度感知全景分割旨在从单幅图像的重建3D语义场景。现有方法直接对全景分割模型添加密集预测式单目深度估计分支解决此问题,在深度估计中仅考虑了像素级底层特征,缺乏对实例级几何信息的利用,实例掩码和深度估计方式的不统一也导致多任务间信息交互的不足。为克服这些限制,本工作探索了实例掩码和深度估计的联合建模问题,提出了更加统一的深度感知全景分割方法。该方法将对全图的深度估计分解至各个实例分别学习预测,并在模型推理阶段根据实例掩码组合在一起。同时,为了缓解不同实例间深度分布范围差异过大导致的实例间共享特征难以学习的问题,本工作将实例深度图进一步解耦为归一化实例深度图、实例深度缩放系数和实例深度偏移系数,并同时使用像素级和实例级监督信息指导深度估计的学习,通过减少搜索空间实现了算法性能的提升。实验结果表明,本工作所提出的方法在多个数据集上实现了相对基准方法更优的性能,尤其是显著提升了在前景物体上的掩码和深度估计性能,验证了方法的有效性。

作者:Naiyu Gao, Fei He, Jian Jia, Yanhu Shan, Haoyang Zhang, Xin Zhao, Kaiqi Huang

成为VIP会员查看完整内容
16

相关内容

CVPR 2022 将于2022年 6 月 21-24 日在美国的新奥尔良举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
NeurIPS 2021丨K-Net: 迈向统一的图像分割
专知会员服务
16+阅读 · 2021年11月25日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
​【CVPR 2021】半监督视频目标分割新算法,实现SOTA性能
专知会员服务
12+阅读 · 2021年4月26日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
从ICCV 2021看夜间场景自监督深度估计最新进展
PaperWeekly
0+阅读 · 2021年10月14日
DynaSLAM II: 紧耦合的多物体跟踪和SLAM
计算机视觉life
1+阅读 · 2021年10月9日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
ICCV 2019 | 精确的端到端的弱监督目标检测网络
AI科技评论
11+阅读 · 2019年12月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2021年11月1日
VIP会员
相关资讯
从ICCV 2021看夜间场景自监督深度估计最新进展
PaperWeekly
0+阅读 · 2021年10月14日
DynaSLAM II: 紧耦合的多物体跟踪和SLAM
计算机视觉life
1+阅读 · 2021年10月9日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
ICCV 2019 | 精确的端到端的弱监督目标检测网络
AI科技评论
11+阅读 · 2019年12月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员