We present a scheme for simulating conditioned semimartingales taking values in Riemannian manifolds. Extending the guided bridge proposal approach used for simulating Euclidean bridges, the scheme replaces the drift of the conditioned process with an approximation in terms of a scaled radial vector field. This handles the fact that transition densities are generally intractable on geometric spaces. We prove the validity of the scheme by a change of measure argument, and we show how the resulting guided processes can be used in importance sampling and for approximating the density of the unconditioned process. The scheme is used for numerically simulating bridges on two- and three-dimensional manifolds, for approximating otherwise intractable transition densities, and for estimating the diffusion mean of sampled geometric data.
翻译:我们提出了一个模拟在里曼尼方块中测值的半成像半成像方案。 扩展用于模拟欧几里德桥桥的引导桥建议方法, 以一个缩放的射线矢量场的近似值取代条件工序的漂移。 这处理了在几何空间中过渡密度通常难以解决的事实。 我们通过改变测量参数来证明这个方案的有效性, 我们展示了如何将由此产生的引导工序用于重要取样和接近无条件工序过程的密度。 这个方法用于二维和三维方块上的数字模拟桥、 近似不易处理的过渡密度, 以及估计抽样几何数据的扩散平均值 。