In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important ``conglomerate'' property of multi-fidelity simulators, where the accuracies of different simulator components (modeling separate physics) are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.
翻译:在科学实验通常成本高昂的时代,多重保真模拟提供了一种强大的预测性科学计算工具。虽然在多重保真建模上已经进行了值得注意的工作,但现有模型没有融入多重保真模拟器的重要“企业集团”属性,其中不同模拟器组件(建模不同的物理)的准确性由不同的保真度参数控制。这样的企业集团模拟器广泛应用于复杂的核物理和天体物理应用程序中。因此,我们提出了一种新的CONglomerate multi-fIdelity Gaussian process(CONFIG)模型,它将这种公司集团结构嵌入到一个新颖的非平稳协方差函数中。我们表明,所提出的CONFIG模型可以捕捉关于企业集团模拟器数值收敛的先验知识,这样就可以高效地模拟多层次保真度系统。在一系列的数值实验和两个应用中,我们证明了CONFIG相对于最先进的模型的预测性能得到了改进。第一个应用于看护臂挠曲的仿真,第二个应用于仿真夸克胶子等离子体的演变,这是在大爆炸后不久填满宇宙的一种理论上的物质。