Privacy protection methods, such as differentially private mechanisms, introduce noise into resulting statistics which often results in complex and intractable sampling distributions. In this paper, we propose to use the simulation-based "repro sample" approach to produce statistically valid confidence intervals and hypothesis tests based on privatized statistics. We show that this methodology is applicable to a wide variety of private inference problems, appropriately accounts for biases introduced by privacy mechanisms (such as by clamping), and improves over other state-of-the-art inference methods such as the parametric bootstrap in terms of the coverage and type I error of the private inference. We also develop significant improvements and extensions for the repro sample methodology for general models (not necessarily related to privacy), including 1) modifying the procedure to ensure guaranteed coverage and type I errors, even accounting for Monte Carlo error, and 2) proposing efficient numerical algorithms to implement the confidence intervals and $p$-values.


翻译:隐私保护方法,例如差分隐私机制,会将噪声引入到结果统计数据中,导致复杂和难以处理的采样分布。在本文中,我们提出使用基于模拟重复取样的方法,对隐私统计数据进行统计有效的置信区间和假设检验。我们表明,这种方法适用于各种隐私推断问题,适当考虑隐私机制引入的偏差(例如通过夹紧实现),并且在统计隐私推断的覆盖率和类型I误差方面改进了其他最先进的推断方法,例如参数自助法。我们还针对通用的模型(不一定与隐私有关)开展了重大改进和扩展,包括1)修改程序,以确保保证覆盖率和类型I误差,即使考虑蒙特卡洛误差;2)提出高效的数值算法来实现置信区间和 $p$ 值。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
专知会员服务
18+阅读 · 2021年8月15日
专知会员服务
11+阅读 · 2021年6月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员