Optimal designs minimize the number of experimental runs (samples) needed to accurately estimate model parameters, resulting in algorithms that, for instance, efficiently minimize parameter estimate variance. Governed by knowledge of past observations, adaptive approaches adjust sampling constraints online as model parameter estimates are refined, continually maximizing expected information gained or variance reduced. We apply adaptive Bayesian inference to estimate transition rates of Markov chains, a common class of models for stochastic processes in nature. Unlike most previous studies, our sequential Bayesian optimal design is updated with each observation, and can be simply extended beyond two-state models to birth-death processes and multistate models. By iteratively finding the best time to obtain each sample, our adaptive algorithm maximally reduces variance, resulting in lower overall error in ground truth parameter estimates across a wide range of Markov chain parameterizations and conformations.
翻译:最佳设计最大限度地减少精确估计模型参数所需的实验运行次数(样本),从而形成算法,例如,有效减少参数估计差异。根据对过去观测的了解,适应性方法调整了网上抽样限制,因为模型参数估计得到改进,不断最大限度地增加预期获得的信息或减少差异。我们采用适应性贝叶斯推论来估计Markov链的过渡率,这是用于自然随机过程的常见模型类别。与大多数以往的研究不同,我们相继的Bayesian最佳设计随着每次观测而更新,并且可以简单地扩大到超过两州模型,到出生-死亡过程和多州模型。通过迭代寻找获取每个样本的最佳时间,我们的适应性算法极大地缩小了差异,导致在广泛的Markov链参数化和符合性之间减少地面真理参数估计的总体误差。