The privacy loss distribution (PLD) provides a tight characterization of the privacy loss of a mechanism in the context of differential privacy (DP). Recent work has shown that PLD-based accounting allows for tighter $(\varepsilon, \delta)$-DP guarantees for many popular mechanisms compared to other known methods. A key question in PLD-based accounting is how to approximate any (potentially continuous) PLD with a PLD over any specified discrete support. We present a novel approach to this problem. Our approach supports both pessimistic estimation, which overestimates the hockey-stick divergence (i.e., $\delta$) for any value of $\varepsilon$, and optimistic estimation, which underestimates the hockey-stick divergence. Moreover, we show that our pessimistic estimate is the best possible among all pessimistic estimates. Experimental evaluation shows that our approach can work with much larger discretization intervals while keeping a similar error bound compared to previous approaches and yet give a better approximation than existing methods.
翻译:隐私损失分配(PLD)在差异隐私(DP)背景下对机制的隐私损失作了严格描述。最近的工作表明,基于PLD的会计允许与其它已知方法相比,对许多流行机制提供更紧的美元(varepsilon,\delta)美元-DP保障。基于PLD的会计的一个关键问题是,如何将任何(潜在连续的)PLD与任何特定离散支持的PLD相匹配。我们提出了解决这一问题的新办法。我们的方法支持悲观的估计,即高估曲棍球与棒的差异(即$/delta$),以及低估曲棍球与棒差异的乐观估计。此外,我们表明,我们悲观的估计是所有悲观估计中最有可能的。实验性评估表明,我们的方法可以在与以往方法相比的类似错误中以更大的离散间隔工作,同时保持比现有方法更好的近似。