Optimizing over the stationary distribution of stochastic differential equations (SDEs) is computationally challenging. A new forward propagation algorithm has been recently proposed for the online optimization of SDEs. The algorithm solves an SDE, derived using forward differentiation, which provides a stochastic estimate for the gradient. The algorithm continuously updates the SDE model's parameters and the gradient estimate simultaneously. This paper studies the convergence of the forward propagation algorithm for nonlinear dissipative SDEs. We leverage the ergodicity of this class of nonlinear SDEs to characterize the convergence rate of the transition semi-group and its derivatives. Then, we prove bounds on the solution of a Poisson partial differential equation (PDE) for the expected time integral of the algorithm's stochastic fluctuations around the direction of steepest descent. We then re-write the algorithm using the PDE solution, which allows us to characterize the parameter evolution around the direction of steepest descent. Our main result is a convergence theorem for the forward propagation algorithm for nonlinear dissipative SDEs.
翻译:优化 Stochestic 差异方程式( SDEs) 的固定分布在计算上具有挑战性。 最近为SDEs 的在线优化提出了一个新的前方传播算法。 该算法解决了SDE, 使用前方差异推算, 提供了梯度的随机估计。 该算法持续更新 SDE 模型的参数和梯度估计。 本文研究非线性消散 SDEs 的远端传播算法的趋同性。 我们利用这一类非线性SDEs 来描述过渡半组及其衍生物的趋同率。 然后, 我们验证了Poisson 部分差异方程式( PDE) 的解决方案的界限, 该方程式为该算法的预期时间组成部分, 围绕最陡度的下降方向。 然后我们用 PDE 解算法重写该算法, 使我们得以在最陡度的下降的方向上参数演变特征。 我们的主要结果是非线性SDEsidealental orem 用于非线性 SDEs 的远端传播算法 。