Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute $\varepsilon$-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis, with an approximation guarantee of $(0.3393+\delta)$, remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a $(\frac{1}{3}+\delta)$-Nash equilibrium, for any constant $\delta>0$. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of Tsaknakis and Spirakis, and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.
翻译:自从在双曲游戏中庆祝的PPAD-纳什平衡的完整结果以来,一长行的研究侧重于计算纳什平衡的多元时算法,计算出美元和纳什平衡的近似值。在本文中,我们建议对Tsaknakis-Spirakis算法进行新的改进,从而产生一种在多式时间算法中计算出美元(frac{1 ⁇ 3 ⁇ 3 ⁇ delta)-纳什平衡的混合法,无论任何固定的$\delta>0美元。我们方法的主要想法是超越使用原始和双重战略的组合(0.3393 ⁇ delta美元),而仍然是过去15年的艺术状态。在本文中,我们建议对Tsaknakis-Spirakis算法进行新的改进,从而形成一种混合时算法,即对任何恒定值的美元(frac{1 ⁇ 3 ⁇ 3 ⁇ 3 ⁇ delta>0美元进行计算。我们方法的主要想法是超越了使用原始和双重战略的配置组合。我们在Spinl和双重战略中根据Spakaki 和我们对Spal 的模型的精化流程中确定了Spal 的模型的精化策略。