Bayesian optimisation (BO) is widely used to optimise stochastic black box functions. While most BO approaches focus on optimising conditional expectations, many applications require risk-averse strategies and alternative criteria accounting for the distribution tails need to be considered. In this paper, we propose new variational models for Bayesian quantile and expectile regression that are well-suited for heteroscedastic noise settings. Our models consist of two latent Gaussian processes accounting respectively for the conditional quantile (or expectile) and the scale parameter of an asymmetric likelihood functions. Furthermore, we propose two BO strategies based on max-value entropy search and Thompson sampling, that are tailored to such models and that can accommodate large batches of points. Contrary to existing BO approaches for risk-averse optimisation, our strategies can directly optimise for the quantile and expectile, without requiring replicating observations or assuming a parametric form for the noise. As illustrated in the experimental section, the proposed approach clearly outperforms the state of the art in the heteroscedastic, non-Gaussian case.
翻译:贝叶斯优化( BO) 被广泛用于优化随机黑盒功能。 虽然大多数BO 方法侧重于优化有条件期望, 但许多应用都需要考虑风险规避策略和分配尾料的替代计算标准。 在本文中, 我们为巴伊斯四分位和预期回归提出了新的变异模型, 适合于超偏移噪音设置。 我们的模型由两种潜伏高斯过程组成, 分别计算有条件的四分位( 或预期) 和不对称可能性函数的比值参数。 此外, 我们提出了两种基于最高值的辛普森抽样和最高值搜索策略, 并适合这些模型和可容纳大量分数的汤普森抽样。 与目前巴伊斯四分位模型不同的是, 我们的战略可以直接优化夸特和预期值, 无需重复观测或假设噪音的参数。 如试验部分所示, 拟议的方法明显超出了超标性、 非伽西案例 的艺术状态 。