A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has approximate solutions whose constraint violation is arbitrarily small. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to "bad" linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe a simple echelon form of weakly infeasible SDPs with the following properties: (i) it is obtained by elementary row operations and congruence transformations, (ii) it makes weak infeasibility evident, and (iii) it permits us to construct any weakly infeasible SDP or bad linear projection by an elementary combinatorial algorithm. Based on our echelon form we generate a challenging library of weakly infeasible SDPs. Finally, we show that some SDPs in the literature are in our echelon form, for example, the SDP from the sum-of-squares relaxation of minimizing the famous Motzkin polynomial.
翻译:微弱不可行的半无限期方案(SDP)没有可行的解决办法,但是它有近似的解决办法,其限制的违反程度是任意的很小的。这些SDP是不可靠的,在数字上往往是无法解决的。它们也与“坏”线性预测密切相关,这些预测将正半无限期矩阵的锥体映射成非封闭的一组。我们描述了微弱不可行的SDP的简单梯子形式,其特性如下:(一) 它是通过小行操作和相容转换获得的,(二) 它使微弱的不可行性变得明显,以及(三) 它允许我们用基本的组合算法建造任何微弱的不可行的SDP或坏的线性投影。根据我们的精子形式,我们产生了一个具有挑战性的微弱不可行的SDP的图书馆。最后,我们展示文献中的一些SDP在我们的echelon形式中,例如,从将著名的Motzkin聚氨基质减缩中产生的SDP。