3D object detection from visual sensors is a cornerstone capability of robotic systems. State-of-the-art methods focus on reasoning and decoding object bounding boxes from multi-view camera input. In this work we gain intuition from the integral role of multi-view consistency in 3D scene understanding and geometric learning. To this end, we introduce VEDet, a novel 3D object detection framework that exploits 3D multi-view geometry to improve localization through viewpoint awareness and equivariance. VEDet leverages a query-based transformer architecture and encodes the 3D scene by augmenting image features with positional encodings from their 3D perspective geometry. We design view-conditioned queries at the output level, which enables the generation of multiple virtual frames during training to learn viewpoint equivariance by enforcing multi-view consistency. The multi-view geometry injected at the input level as positional encodings and regularized at the loss level provides rich geometric cues for 3D object detection, leading to state-of-the-art performance on the nuScenes benchmark. The code and model are made available at https://github.com/TRI-ML/VEDet.
翻译:从视角不变性角度的多视图三维物体检测
三维物体检测是机器人系统的基石能力,并且是一项重要的研究领域。目前,最先进的方法侧重于从多视图相机输入中推理和解码物体边界框。在本文中,我们从多视图一致性在三维场景理解和几何学习中的重要作用出发,引入了一种新的三维物体检测框架VEDet,该框架通过视角意识和等变性利用三维多视图几何来改善物体定位。VEDet利用查询式转换器架构,通过将3D视角几何位置编码添加到图像特征中来编码3D场景。我们在输出级别设计了以视角为条件的查询,这使得在训练期间生成多个虚拟帧以通过强制多视图一致性来学习视角等变性成为可能。注入到输入级别的多视图几何位置编码,并在损失级别上规范化,为3D物体检测提供了丰富的几何线索,从而在nuScenes基准测试中实现了最先进的性能。代码和模型发布在https://github.com/TRI-ML/VEDet 上。