Environmental epidemiologic studies routinely utilize aggregate health outcomes to estimate effects of short-term (e.g., daily) exposures that are available at increasingly fine spatial resolutions. However, areal averages are typically used to derive population-level exposure, which cannot capture the spatial variation and individual heterogeneity in exposures that may occur within the spatial and temporal unit of interest (e.g., within day or ZIP code). We propose a general modeling approach to incorporate within-unit exposure heterogeneity in health analyses via exposure quantile functions. Furthermore, by viewing the exposure quantile function as a functional covariate, our approach provides additional flexibility in characterizing associations at different quantile levels. We apply the proposed approach to an analysis of air pollution and emergency department (ED) visits in Atlanta over four years. The analysis utilizes daily ZIP code-level distributions of personal exposures to four traffic-related ambient air pollutants simulated from the Stochastic Human Exposure and Dose Simulator. Our analyses find that effects of carbon monoxide on respiratory and cardiovascular disease ED visits are more pronounced with changes in lower quantiles of the population-level exposure. Software for implement is provided in the R package nbRegQF.
翻译:环境流行病学研究经常利用总体健康结果来估计短期(如每日)接触的短期(如每日)接触,空间分辨率越来越微弱,但通常使用区域平均值来得出人口接触,这不能反映空间和时间单位(如白天或ZIP代码)内可能发生的接触的空间变化和个别异质性。我们建议采用一般模型方法,通过接触量分数功能将单位内接触接触异质纳入健康分析。此外,通过将接触量函数视为功能共变,我们的方法在确定不同孔度层次的关联特性方面提供了更多的灵活性。我们采用拟议办法,分析在四年内在亚特兰大可能发生的空气污染和紧急部门访问(ED)时(如在白天或ZIP代码内)。我们利用每日ZIP编码的分布情况,将个人接触与四种与交通有关的环境空气污染的分布纳入通过人类接触和Dose Simulator模拟产生的健康分析中。我们的分析发现,在对呼吸道和心血管疾病的影响是功能性共变的,我们的方法为不同孔级协会提供了更多的灵活性。我们建议,在低量的软件中,对人口接触进行了更明显的变化。