Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.
翻译:在系统理论、流体力学、化学反应建模和数学分析等各种学科中,将普通微分方程的多项式和非多项式系统进行二次化都是有优势的。二次化揭示了模型的新变量和结构,这些变量和结构可能更易于分析、模拟、控制,并且为学习提供了方便的参数化。本文提出了对非自治ODE的二次化的新理论、算法和软件能力。我们提供了存在性结果(取决于输入函数的正则性),证明了在什么情况下可以通过二次化获得二次-双线性系统。此外,针对保留非线性结构的任意维度系统,我们进一步开发了存在性结果和算法,用于推广二次化过程。对于这样的系统,我们提供了维度不可知的二次化。一个例子是半离散化的PDE,当离散化尺寸增大时,非线性项仍然是符号相同的。作为这项研究实际应用的重要方面,我们扩展了QBee软件的功能,以支持非自治ODE系统和任意维ODE系统。我们提供了几个ODE的例子,这些例子以前已经在文献中报道过,我们的新算法找到了比以前报告的lifting变换更低维的二次化ODE系统。我们进一步强调了一个重要的二次化领域:约减模型学习。这个领域可以从以最佳lifting变量工作中获得显著的好处,其中二次模型提供了直接的模型参数化,同时还避免了非线性项的额外超约减。一个太阳风的例子突出了这些优点。