We consider identification and inference for the average treatment effect and heterogeneous treatment effect conditional on observable covariates in the presence of unmeasured confounding. Since point identification of these treatment effects is not achievable without strong assumptions, we obtain bounds on these treatment effects by leveraging differential effects, a tool that allows for using a second treatment to learn the effect of the first treatment. The differential effect is the effect of using one treatment in lieu of the other. We provide conditions under which differential treatment effects can be used to point identify or partially identify treatment effects. Under these conditions, we develop a flexible and easy-to-implement semi-parametric framework to estimate bounds and establish asymptotic properties over the support for conducting statistical inference. The proposed method is examined through a simulation study and two case studies that investigate the effect of smoking on the blood level of lead and cadmium using the National Health and Nutrition Examination Survey, and the effect of soft drink consumption on the occurrence of physical fights in teenagers using the Youth Risk Behavior Surveillance System.


翻译:我们考虑在存在未测到的混淆因素的情况下,针对可观测协变量的平均处理效应和异质处理效应的识别和推断。由于在没有强假设的情况下无法点识别这些处理效应,因此我们通过利用差分效应来获得这些处理效应的上下界,差分效应是使用第二种处理来学习第一种处理效应的工具。我们提供了可以使用差分处理效应来点识别或部分识别处理效应的条件。在这些条件下,我们开发了一种灵活且易于实现的半参数框架来估计上下界并确定用于进行统计推断的支持的渐近特性。所提出的方法通过使用美国国民健康和营养调查研究的吸烟对铅和镉血液水平的影响以及使用青少年风险行为监测系统研究软饮料摄入对身体战斗发生率的影响的两个案例研究进行了检验。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年6月12日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年6月12日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员