We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images from only a single training sample. We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations via matching multi-level feature representations in the classifier, associated with adversarial training with an external discriminator. IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process. With extensive experimental results, we demonstrate qualitatively and quantitatively that IMAGINE performs favorably against state-of-the-art GAN-based and inversion-based methods, across three different image domains (i.e., objects, scenes, and textures).
翻译:我们采用了一种反向法,称为IMAGE-Guided 模型INVERSION(IMAGINE),从一个单一的培训样本中产生高质量和多样的图像。我们利用从受过培训的分类师那里获得的图像语义学知识,通过与外部歧视者进行对抗性培训,在分类师中进行多层次的特征描述,从而实现貌似几代人。IMAGINE使合成程序能够同时1)在合成过程中强制实施语义特征限制,2)在没有发电机培训的情况下制作现实的图像,3)给用户对生成过程的直觉控制。通过广泛的实验结果,我们从质量和数量上证明IMAGINE在三个不同的图像领域(即对象、场景和纹理)对最新GAN基础和反向法方法的有利表现。