Consider the geometric range space $(X, \mathcal{H}_d)$ where $X \subset \mathbb{R}^d$ and $\mathcal{H}_d$ is the set of ranges defined by $d$-dimensional halfspaces. In this setting we consider that $X$ is the disjoint union of a red and blue set. For each halfspace $h \in \mathcal{H}_d$ define a function $\Phi(h)$ that measures the "difference" between the fraction of red and fraction of blue points which fall in the range $h$. In this context the maximum discrepancy problem is to find the $h^* = \arg \max_{h \in (X, \mathcal{H}_d)} \Phi(h)$. We aim to instead find an $\hat{h}$ such that $\Phi(h^*) - \Phi(\hat{h}) \le \varepsilon$. This is the central problem in linear classification for machine learning, in spatial scan statistics for spatial anomaly detection, and shows up in many other areas. We provide a solution for this problem in $O(|X| + (1/\varepsilon^d) \log^4 (1/\varepsilon))$ time, which improves polynomially over the previous best solutions. For $d=2$ we show that this is nearly tight through conditional lower bounds. For different classes of $\Phi$ we can either provide a $\Omega(|X|^{3/2 - o(1)})$ time lower bound for the exact solution with a reduction to APSP, or an $\Omega(|X| + 1/\varepsilon^{2-o(1)})$ lower bound for the approximate solution with a reduction to 3SUM. A key technical result is a $\varepsilon$-approximate halfspace range counting data structure of size $O(1/\varepsilon^d)$ with $O(\log (1/\varepsilon))$ query time, which we can build in $O(|X| + (1/\varepsilon^d) \log^4 (1/\varepsilon))$ time.


翻译:考虑几何范围 $( X,\ mathcal{ H ⁇ d), 其中美元= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 或 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月27日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员