The Traveling Tournament Problem (TTP) is a hard but interesting sports scheduling problem inspired by Major League Baseball, which is to design a double round-robin schedule such that each pair of teams plays one game in each other's home venue, minimizing the total distance traveled by all $n$ teams ($n$ is even). In this paper, we consider TTP-2, i.e., TTP with one more constraint that each team can have at most two consecutive home games or away games. Due to the different structural properties, known algorithms for TTP-2 are different for $n/2$ being odd and even. For odd $n/2$, the best known approximation ratio is about $(1+12/n)$, and for even $n/2$, the best known approximation ratio is about $(1+4/n)$. In this paper, we further improve the approximation ratio from $(1+4/n)$ to $(1+3/n)$ for $n/2$ being even. Experimental results on benchmark sets show that our algorithm can improve previous results on all instances with even $n/2$ by $1\%$ to $4\%$.
翻译:旅行锦标赛(TTP)是一个困难但有趣的体育日程安排问题,是由主要联盟棒球引发的,即设计一个双轮轮棋时间表,让每对球队在对方的场地里玩一个游戏,最大限度地减少所有球队的总距离(美元是偶数 ) 。 在本文中,我们考虑TTP-2,即TTP-2,每个球队最多可以连续进行两次家庭游戏或离家游戏,再加一个限制。由于不同的结构属性,已知的TTP-2算法不同,美元/美元是奇数甚至偶数。对于奇数的n/2美元,已知的最佳近似比率约为1+12/n美元,即使双美元,最已知的近似率约为1+4/n美元。在本文中,我们进一步将美元(1+4/n)至1美元(1+3/n)的近似率提高到1美元/n美元(美元)的正值。基准数的实验结果表明,我们的算法可以改善所有案例的以往结果,甚至1美元/美元到4美元。