The maximum independent set problem is one of the most important problems in graph algorithms and has been extensively studied in the line of research on the worst-case analysis of exact algorithms for NP-hard problems. In the weighted version, each vertex in the graph is associated with a weight and we are going to find an independent set of maximum total vertex weight. In this paper, we design several reduction rules and a fast exact algorithm for the maximum weighted independent set problem, and use the measure-and-conquer technique to analyze the running time bound of the algorithm. Our algorithm works on general weighted graphs and it has a good running time bound on sparse graphs. If the graph has an average degree at most 3, our algorithm runs in $O^*(1.1443^n)$ time and polynomial space, improving previous running time bounds for the problem in cubic graphs using polynomial space.
翻译:最大独立的设置问题是图表算法中最重要的问题之一, 并在对NP- 硬问题精确算法的最坏情况分析的研究中进行了广泛研究。 在加权版本中, 图形中的每个顶点都与重量相关, 我们将会找到一组独立的最大脊椎总重量。 在本文中, 我们为最大加权独立算法问题设计了几项减少规则和快速精确算法, 并使用测量和征服技术来分析算法的运行时间约束 。 我们的算法在一般的加权算法上工作, 并且对稀薄的图表有良好的运行时间约束 。 如果图表在最多3个程度上具有平均程度, 我们的算法运行时间和多元空间为$O ⁇ ( 1. 1443 ⁇ )$( 1. 1443 ⁇ n) 和 多元空间, 从而用多元空间改进了在立方图中的问题的前运行时间界限 。