The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable $Y\in\mathbb{R}$ given another random variable $X\in\mathbb{R}^{d}$ is of much interest in a variety of statistical contexts. In this paper we propose two estimators for the MMSE, one based on a two-layer neural network and the other on a special three-layer neural network. We derive lower bounds for the MMSE based on the proposed estimators and the Barron constant of an appropriate function of the conditional expectation of $Y$ given $X$. Furthermore, we derive a general upper bound for the Barron constant that, when $X\in\mathbb{R}$ is post-processed by the additive Gaussian mechanism, produces order optimal estimates in the large noise regime.
翻译:通过最佳估计随机变量$Y\in\mathbb{R}$(如果另一个随机变量$X\in\mathb{R ⁇ d}$(美元),那么最小平均差值(MMSE)是能够实现的。对于各种统计背景,我们对最低平均差值(MMSE)非常感兴趣。在本文中,我们提议了MMSE的两个估计值,一个基于双层神经网络,另一个基于特殊三层神经网络。我们根据提议的测算器和标准值(美元)的 Barron 常数,得出MMSE 的下限值。此外,我们为Barron常数得出了一个总上限,即当$X\in\mathb{R}(美元)被添加式高斯机制处理后,在大型噪音系统中产生最佳的定序估计值。