2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.
翻译:2D 低剂量单虱腹部计算断层成像(CT) 切片能够直接测量身体构成,这对在老龄化时对健康关系定量定性至关重要。然而,使用 2D 腹部切片对身体构成变化进行纵向分析具有挑战性,因为不同年份获得的长颈切片之间的方位差异很大。为了缩小位置差异,我们将有条件的基因变异模型推广到我们的C-SliceGen 数据集,该模型将腹部区域任意的轴切片作为条件,通过估计潜伏空间的结构变化产生确定的脊椎水平切片。对内部数据集的1170个对象和BTCV MICCAI 2015 挑战的50个对象进行的实验表明,我们的模型能够产生高品质的现实主义和相似性图像。关于Ang(BLSA) 上层纵向研究的20个主题的外部实验证实,我们的方法可以调和肌肉和内脏脂肪区结构结构变化的切片差异。我们的方法提供了一种有希望的方向,即从肌肉和内脏脂肪区域的角度,从不同的头片水平分析。