We demonstrate how Hahn et al.'s Bayesian Causal Forests model (BCF) can be used to estimate conditional average treatment effects for the longitudinal dataset in the 2022 American Causal Inference Conference Data Challenge. Unfortunately, existing implementations of BCF do not scale to the size of the challenge data. Therefore, we developed flexBCF -- a more scalable and flexible implementation of BCF -- and used it in our challenge submission. We investigate the sensitivity of our results to two ad hoc modeling choices we made during our initial submission: (i) the choice of propensity score estimation method and (ii) the use of sparsity-inducing regression tree priors. While we found that our overall point predictions were not especially sensitive to these modeling choices, we did observe that running BCF with flexibly estimated propensity scores often yielded better-calibrated uncertainty intervals.
翻译:我们展示了Hahn等人的Bayesian Causal森林模型(BCF)如何用来估计2022年美国Causar 推断会议数据挑战中纵向数据集的有条件平均处理效果。不幸的是,目前对BCF的运用没有达到挑战数据的规模。因此,我们开发了弹性BCF -- -- 更可伸缩和灵活地实施BCF -- -- 并在提交挑战时使用了它。我们调查了我们的结果对我们在初次提交时所作的两个临时模式选择的敏感性:(一) 常态评分估计方法的选择,以及(二) 使用催化回归树前期的方法。虽然我们发现我们的总点预测对这些模型选择并不特别敏感,但我们确实发现,用灵活估计的活性分数运行BCFCF往往产生更精确的不确定性间隔。