Embodied agents in vision navigation coupled with deep neural networks have attracted increasing attention. However, deep neural networks are vulnerable to malicious adversarial noises, which may potentially cause catastrophic failures in Embodied Vision Navigation. Among these adversarial noises, universal adversarial perturbations (UAP), i.e., the image-agnostic perturbation applied on each frame received by the agent, are more critical for Embodied Vision Navigation since they are computation-efficient and application-practical during the attack. However, existing UAP methods do not consider the system dynamics of Embodied Vision Navigation. For extending UAP in the sequential decision setting, we formulate the disturbed environment under the universal noise $\delta$, as a $\delta$-disturbed Markov Decision Process ($\delta$-MDP). Based on the formulation, we analyze the properties of $\delta$-MDP and propose two novel Consistent Attack methods for attacking Embodied agents, which first consider the dynamic of the MDP by estimating the disturbed Q function and the disturbed distribution. In spite of victim models, our Consistent Attack can cause a significant drop in the performance for the Goalpoint task in habitat. Extensive experimental results indicate that there exist potential risks for applying Embodied Vision Navigation methods to the real world.


翻译:然而,深神经网络容易受到恶意对抗性噪音的侵扰,这可能会在Embidi Vision导航中造成灾难性的失败。在这些对抗性噪音中,普遍对抗性扰动(UAP),即对代理人收到的每个框架应用的图像-不可知性扰动(UAP),对于Embodi Vision导航更为关键,因为它们在攻击期间是计算效率高的和应用实用性的,但是,现有的UAP方法并不考虑Embidio Vision导航的系统动态。为了在连续决策中扩大UAP,我们根据普遍噪音($\delta$)来设计混乱的环境,作为美元-dropped Markov 决策过程($\delta$-MDP)。根据这一提法,我们分析了$delta-MDP的特性,并提出了两种全新的攻击Embudi Videia代理人的一致攻击方法,这些方法首先考虑MDP的动态,通过估计扰动的Q功能和扰动性分布。尽管在连续的决策中,我们根据普遍噪动的视野模型,但仍可以显示我们为全球目标目标目标受害者提供的一种潜在的业绩。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
83+阅读 · 2022年7月16日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员