The utilization of millimeter-wave (mmWave) bands in 5G networks poses new challenges to network planning. Vulnerability to blockages at mmWave bands can cause coverage holes (CHs) in the radio environment, leading to radio link failure when a user enters these CHs. Detection of the CHs carries critical importance so that necessary remedies can be introduced to improve coverage. In this letter, we propose a novel approach to identify the CHs in an unsupervised fashion using a state-of-the-art manifold learning technique: uniform manifold approximation and projection. The key idea is to preserve the local-connectedness structure inherent in the collected unlabelled channel samples, such that the CHs from the service area are detectable. Our results on the DeepMIMO dataset scenario demonstrate that the proposed method can learn the structure within the data samples and provide visual holes in the low-dimensional embedding while preserving the CH boundaries. Once the CH boundary is determined in the low-dimensional embedding, channel-based localization techniques can be applied to these samples to obtain the geographical boundaries of the CHs.
翻译:使用5G网络中的毫米波段对网络规划提出了新的挑战。在毫米波段的阻塞可能会在无线电环境中造成覆盖孔(CHs),导致当用户进入这些CHs时无线电连接失败。检测CHs具有关键重要性,因此可以采用必要的补救措施来扩大覆盖。在本信中,我们建议采用一种新颖的方法,使用一种最先进的多重学习技术,在不受监督的情况下,用一种先进的多重学习技术,即统一的多元近似和投影来识别CHs。关键的想法是保存所收集的无标签通道样品所固有的本地连接结构,使服务区的CHs能够被探测。我们在深水海事组织数据集假设中得出的结果表明,拟议的方法可以在数据样本中学习结构,并在保护CH边界的同时提供低维嵌入的低维嵌入中视觉洞。一旦在低维嵌入中确定CH的边界,这些样品就可以应用基于频道的本地化技术来获取CH的地理界限。