In this paper, we discuss the design of a sliding-correlator channel sounder for 28 GHz propagation modeling on the NSF POWDER testbed in Salt Lake City, UT. Beam-alignment is mechanically achieved via a fully autonomous robotic antenna tracking platform, designed using commercial off-the-shelf components. Equipped with an Apache Zookeeper/Kafka managed fault-tolerant publish-subscribe framework, we demonstrate tracking response times of 27.8 ms, in addition to superior scalability over state-of-the-art mechanical beam-steering systems. Enhanced with real-time kinematic correction streams, our geo-positioning subsystem achieves a 3D accuracy of 17 cm, while our principal axes positioning subsystem achieves an average accuracy of 1.1 degrees across yaw and pitch movements. Finally, by facilitating remote orchestration (via managed containers), uninhibited rotation (via encapsulation), and real-time positioning visualization (via Dash/MapBox), we exhibit a proven prototype well-suited for V2X measurements.
翻译:在本文中,我们讨论了在盐湖市盐湖市测试床NSF POWDER测试台28 GHS 的滑动-冷却信道声学模型的设计。 光束对齐是通过一个完全自主的机器人天线跟踪平台机械地实现的,该天线跟踪平台的设计是利用商业现成部件设计的。 配有阿帕奇动物园管理员/卡夫卡管理过错容忍性出版物订阅框架,我们展示了27.8米的跟踪反应时间,以及相对于最先进的机械波束传感器系统的高度可扩缩性。 借助实时电动校正流,我们的地理定位次子实现了17厘米的3D精确度,而我们的主要轴定位次子的测距平均精确度为1.1度,横跨亚线和声道运动。 最后,我们通过促进远程调控(通过管理容器)、不受抑制的旋转(通过封装)和实时定位可视化(通过Dash/MapBox),展示了V2X测量的经证明原型井。