NPN classification is an essential problem in the design and verification of digital circuits. Most existing works explored variable symmetries and cofactor signatures to develop their classification methods. However, cofactor signatures only consider the face characteristics of Boolean functions. In this paper, we propose a new NPN classifier using both face and point characteristics of Boolean functions, including cofactor, influence, and sensitivity. The new method brings a new perspective to the classification of Boolean functions. The classifier only needs to compute some signatures, and the equality of corresponding signatures is a prerequisite for NPN equivalence. Therefore, these signatures can be directly used for NPN classification, thus avoiding the exhaustive transformation enumeration. The experiments show that the proposed NPN classifier gains better NPN classification accuracy with comparable speed.
翻译:NPN分类是数字电路设计与核查中的一个基本问题。大多数现有作品探索了可变的对称和共构签名,以制定其分类方法。然而,共构签名只考虑布林函数的面貌特征。在本文件中,我们提议使用布林函数的面貌和点特征,包括共构、影响和敏感性,建立新的NPN分类。新方法为布林函数的分类带来了新的视角。分类者只需计算一些签名,对应签名的平等性是NPN等值的先决条件。因此,这些签名可以直接用于NPN分类,从而避免详尽的转换。实验表明,拟议的NPN分类者以可比的速度获得更好的NPN分类准确性。