In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
翻译:近年来,移动设备以更强的计算能力和更大的存储能力获得越来越多的发展。一些计算密集型机器学习和深层学习任务现在可以在移动设备上运行。为了利用移动设备上的资源并保护用户的隐私,提出了移动分布式机器学习的想法。它利用当地硬件资源和当地数据来解决移动设备上机器学习的子问题,并且只上载计算结果而不是原始数据,以促进优化全球模型。这一结构不仅可以减轻计算和存储服务器的负担,还可以保护用户的敏感信息。另一个好处是减少带宽,因为各种本地数据现在可以参与培训过程,而无需上传到服务器上。我们在本文件中对移动分布式机器学习的最新研究进行了全面调查。我们调查了一些广泛使用的移动分布式机器学习方法。我们还就这个领域的挑战和未来方向进行了深入的讨论。我们认为,这一调查可以清楚地展示移动分布式机器学习的概况,并提供关于将移动分布式机器学习应用于实际应用的指南。