Randomized neural networks (randomized NNs), where only the terminal layer's weights are optimized constitute a powerful model class to reduce computational time in training the neural network model. At the same time, these models generalize surprisingly well in various regression and classification tasks. In this paper, we give an exact macroscopic characterization (i.e., a characterization in function space) of the generalization behavior of randomized, shallow NNs with ReLU activation (RSNs). We show that RSNs correspond to a generalized additive model (GAM)-typed regression in which infinitely many directions are considered: the infinite generalized additive model (IGAM). The IGAM is formalized as solution to an optimization problem in function space for a specific regularization functional and a fairly general loss. This work is an extension to multivariate NNs of prior work, where we showed how wide RSNs with ReLU activation behave like spline regression under certain conditions and if the input is one-dimensional.
翻译:如何(隐式)正则化ReLU神经网络特征化学习的函数--第II部分:带有随机第一层的两层多元网络
摘要翻译:
随机神经网络(randomized NNs)是神经网络模型的一个强大类型,只有终端层的权重是可优化的,可以在训练神经网络模型时减少计算时间。与此同时,在各种回归和分类任务中,这些模型在泛化方面表现出了出人意料的优秀性能。在本文中,我们给出了随机浅层的ReLU神经网络(RSNs)泛化行为的精确宏观特征化(即在函数空间中的特征化)。我们展示了RSNs对应于广义加性模型(GAM)类型的回归,其中考虑了无限多个方向:无限广义加性模型(IGAM)。IGAM被形式化为解决函数空间优化问题的解,并使用特定的正则化函数和相当通用的损失函数。这项工作是先前工作的多元神经网络扩展,其中我们展示了在一定条件下,如果输入是一维的且条件成立,RSNs与ReLU激活的宽神经网络模型相似于样条回归。