We advocate for the use of dual quaternions to represent poses and twists for robotics. We show how to represent torques and forces using dual quaternions. We introduce the notion of the Lie derivative, and explain how it can be used to calculate the behavior of actuators. We show how to combine dual quaternions with the Newton-Raphson method to compute forward kinematics for parallel robots. We derive the equations of motion in dual quaternion form. This paper contains results we have not seen before, which are listed in the conclusion.
翻译:我们主张使用双四制来代表机器人的外形和曲折。 我们演示如何使用双四制来代表托盘和力量。 我们引入了 " 利 " 衍生物的概念, 并解释如何使用它来计算导体的行为。 我们演示了如何将双四制与牛顿-拉夫森方法结合起来, 来计算平行机器人的远方运动体。 我们用双四制形式来计算运动方程式。 本文包含我们没有看到的结果, 这些结果列在结论中 。