We propose a matrix-free solver for the numerical solution of the cardiac electrophysiology model consisting of the monodomain nonlinear reaction-diffusion equation coupled with a system of ordinary differential equations for the ionic species. Our numerical approximation is based on the high-order Spectral Element Method (SEM) to achieve accurate numerical discretization while employing a much smaller number of Degrees of Freedom than first-order Finite Elements. We combine vectorization with sum-factorization, thus allowing for a very efficient use of high-order polynomials in a high performance computing framework. We validate the effectiveness of our matrix-free solver in a variety of applications and perform different electrophysiological simulations ranging from a simple slab of cardiac tissue to a realistic four-chamber heart geometry. We compare SEM to SEM with Numerical Integration (SEM-NI), showing that they provide comparable results in terms of accuracy and efficiency. In both cases, increasing the local polynomial degree $p$ leads to better numerical results and smaller computational times than reducing the mesh size $h$. We also implement a matrix-free Geometric Multigrid preconditioner that results in a comparable number of linear solver iterations with respect to a state-of-the-art matrix-based Algebraic Multigrid preconditioner. As a matter of fact, the matrix-free solver proposed here yields up to 45$\times$ speed-up with respect to a conventional matrix-based solver.
翻译:我们为心脏电子生理模型的数字解析建议一个不使用矩阵的解析器,该模型由单度非线性反扩散反射方程式组成,并配有对离子物种的普通差异方程系统。我们的数字近似值基于高阶光谱元素法(SEM),以便实现精确的数字分解,同时使用比一阶极限元素少得多的自由度(SEM-NI),我们把矢量化和总因子化结合起来,这样就可以在一个高性能计算框架中非常有效地使用高阶多级多元分子。我们在各种应用中验证无基数解解方程式的有效性,并进行不同的电子生理模拟,从简单的心脏组织板到现实的四色心心心脏测量法(SEM-NI),我们把SEM与自由度和数字整合法(SEM-NI)相比,表明它们提供了在准确性和效率方面的可比的结果。在这两种情况下,提高当地超量量量量量量量度的多元度导致数字结果,比降低计算方法的分辨率。我们验证了在各种应用中,我们还进行了不同的电子物理模拟模拟模拟模拟模拟模拟模拟模拟,我们用了一个不比标准的平基数,一个平基模型,一个平基的平基数,一个平基数,一个平基的平基数的基数的基质的基数的基质基数的基数,一个平基质的基数,一个平基数,一个平基数,一个平基数的基数的基数的基数的基数的基数的基数的基质基数,一个平基数的基数的基数,一个基数的基数的基数,一个基数的基数的基数的基数的基数的基数,一个基数,一个基数的基数的基数的基数的基数的基数的基数的基数的基数的基数的基数,一个基数,一个基数的基数的基数的基数的基数的基数的基数,一个基数,一个基数的基数的基数,一个基数的基数的基数的基数的基数的基数的基数的基数,一个基数的基数的基数的基数的基数的基数的基数