项目名称: 拟南芥COLD1 基因介导的氧化信号传递及转录调控机制分析

项目编号: No.31301165

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 赵孝亮

作者单位: 新乡医学院

项目金额: 23万元

中文摘要: 已知活性氧作为关键信号分子,参与了植物生长发育、逆境应答、气孔运动和细胞死亡等许多重要的生理过程,但对于其调控基因表达的分子机制尚不清楚。我们前期工作通过远红外成像系统成功分离并鉴定一个干旱敏感基因COLD1,其叶片表面温度相对较低,且cold1 突变体对植物激素ABA、氧化胁迫等均高度敏感,这表明COLD1 基因在植物应答逆境胁迫中扮演重要角色。最近利用生物信息学和生物化学手段还发现COLD1 能与H2O2 相关转录因子HATF1 相互作用,推测COLD1 可能通过转录因子HATF1 调控下游基因的转录,引起植物相应的生理生化变化以适应胁迫。以此为线索,本项目希望综合利用多学科研究技术,分离鉴定COLD1 介导的活性氧信号转导下游成分,解析COLD1 调控基因转录的基本模式,阐明活性氧信号调节植物抗逆反应的分子机制。为提高作物水分利用效率和作物改良提供重要的理论探索。

中文关键词: 拟南芥;活性氧;转录调控;胁迫应答;

英文摘要: Reactive oxygen species as signal molecules involved in many important physiological processes such as plant growth and development, stress response, stomatal movement and cell death. However, the detailed molecular mechanism of the signaling pathways is not fully understood. Our previous work using far-infrared imaging system isolated and identified COLD1 gene, the cold1 mutant showed hyper-sensitive to drought and its leaf surface temperature was relatively low. Here we demonstrate that cold1 mutant also exhibited remarkably sensitive to oxidation and ABA stress in Arabidopsis, which suggested that COLD1 may play a key role in the response to oxidative stress of the plant. Recently, using bioinformatics and biochemical tools, we found that COLD1 could interact physically with H2O2-associated transcription factor HATF1, which presumed that COLD1 may regulate the transcriptional expression of the down-steam genes by the transcription factor HATF1 and achieve the regulation of plant oxidative stress signal transduction. Comprehensive utilization of the multi-disciplinary research techniques, the isolation and identification of the downstream components in ROS signal pathway make us well understand the basic pattern of gene transcription regulated by COLD1 and the molecular mechanism of plant stress response regul

英文关键词: Arabidopsis;Reactive oxygen species;Transcriptional regulation;Stress response;

成为VIP会员查看完整内容
0

相关内容

【ICML2022】深度神经网络中的特征学习与信号传播
专知会员服务
25+阅读 · 2022年6月2日
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【ICML2020Tutorial】机器学习信号处理,100页ppt
专知会员服务
112+阅读 · 2020年8月15日
聊聊社交产品中的信号与暗示
人人都是产品经理
0+阅读 · 2022年1月19日
2022 年,让我们登上更大的舞台
谷歌开发者
0+阅读 · 2021年12月31日
你能接受刘海屏的 MacBook 吗?
ZEALER订阅号
0+阅读 · 2021年10月18日
一文带你了解MultiBERT
深度学习自然语言处理
16+阅读 · 2020年6月28日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
28+阅读 · 2022年1月13日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
12+阅读 · 2021年3月24日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
小贴士
相关资讯
聊聊社交产品中的信号与暗示
人人都是产品经理
0+阅读 · 2022年1月19日
2022 年,让我们登上更大的舞台
谷歌开发者
0+阅读 · 2021年12月31日
你能接受刘海屏的 MacBook 吗?
ZEALER订阅号
0+阅读 · 2021年10月18日
一文带你了解MultiBERT
深度学习自然语言处理
16+阅读 · 2020年6月28日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员