Numerical simulations with rigid particles, drops or vesicles constitute some examples that involve 3D objects with spherical topology. When the numerical method is based on boundary integral equations, the error in using a regular quadrature rule to approximate the layer potentials that appear in the formulation will increase rapidly as the evaluation point approaches the surface and the integrand becomes sharply peaked. To determine when the accuracy becomes insufficient, and a more costly special quadrature method should be used, error estimates are needed. In this paper we present quadrature error estimates for layer potentials evaluated near surfaces of genus 0, parametrized using a polar and an azimuthal angle, discretized by a combination of the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve no unknown coefficients, but complex valued roots of a specified distance function. The evaluation of the error estimates in general requires a one dimensional local root-finding procedure, but for specific geometries we obtain analytical results. Based on these explicit solutions, we derive simplified error estimates for layer potentials evaluated near spheres; these simple formulas depend only on the distance from the surface, the radius of the sphere and the number of discretization points. The usefulness of these error estimates is illustrated with numerical examples.
翻译:基于边界积分方程的数值模拟涉及到具有球面拓扑的三维对象,如刚性粒子、液滴或囊泡。当使用常规积分规则来逼近在公式中出现的层势时,误差会随着计算点靠近表面和被积函数变得陡峭而迅速增加。为了确定精度何时变得不足,需要误差估计。本文提出了针对在具有亏格0表面附近评估的层势的积分误差估计,该表面利用极角和方位角进行参数化,并采用高斯勒让德和梯形形式的积分规则进行离散化。误差估计不涉及未知系数,而是由指定距离函数的复根组成。通常需要一维本地根查找过程来评估误差估计,但对于特定几何形状,我们获得了分析结果。基于这些显式解,我们导出了关于球面附近层势的简化误差估计;这些简单的公式仅取决于表面到计算点的距离、球的半径和离散化点的数量。我们通过数值实例说明了这些误差估计的有用性。