Musical instrument classification, a key area in Music Information Retrieval, has gained considerable interest due to its applications in education, digital music production, and consumer media. Recent advances in machine learning, specifically deep learning, have enhanced the capability to identify and classify musical instruments from audio signals. This study applies various machine learning methods, including Naive Bayes, Support Vector Machines, Random Forests, Boosting techniques like AdaBoost and XGBoost, as well as deep learning models such as Convolutional Neural Networks and Artificial Neural Networks. The effectiveness of these methods is evaluated on the NSynth dataset, a large repository of annotated musical sounds. By comparing these approaches, the analysis aims to showcase the advantages and limitations of each method, providing guidance for developing more accurate and efficient classification systems. Additionally, hybrid model testing and discussion are included. This research aims to support further studies in instrument classification by proposing new approaches and future research directions.
翻译:暂无翻译