Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.
翻译:在各种知识驱动的应用中,可以提供实体之间基本关系信息的知识图表(KGs)被广泛广泛使用,在各种知识驱动的应用中,可以提供实体之间基本关系信息的知识图表(KGs)被广泛使用;由于人类总体知识是无数的,仍然在爆炸性地增长,而且变化频繁,因此,知识的构建和更新不可避免地涉及人文监督较少的自动机制,通常给KGs带来大量噪音和冲突。然而,大多数传统的知识代表学习方法假定,现有KGs的所有三重事实都具有同等意义,而没有任何噪音。为了解决这个问题,我们提议建立一个新的信任意识知识代表学习框架(CKKRL),在学习信心的同时发现KGs可能存在的噪音,同时学习知识表达方式。具体地说,我们引入了对传统的基于翻译的知识代表学习方法的三重信任。为了使三重信任更加灵活和普遍,我们只利用KGs的内部结构信息,提出三重信任的三重信任建议,同时考虑当地和全球结构信息。在实验中,我们评价我们关于知识图表噪音检测、知识图表完成和三重分类的模式。实验结果表明,我们的信任模型在发现所有任务上都取得了重大和一致的发现能力。