We develop a constructive approach to generate artificial neural networks representing the exact ground states of a large class of many-body lattice Hamiltonians. It is based on the deep Boltzmann machine architecture, in which two layers of hidden neurons mediate quantum correlations among physical degrees of freedom in the visible layer. The approach reproduces the exact imaginary-time Hamiltonian evolution, and is completely deterministic. In turn, compact and exact network representations for the ground states are obtained without stochastic optimization of the network parameters. The number of neurons grows linearly with the system size and total imaginary time, respectively. Physical quantities can be measured by sampling configurations of both physical and neuron degrees of freedom. We provide specific examples for the transverse-field Ising and Heisenberg models by implementing efficient sampling. As a compact, classical representation for many-body quantum systems, our approach is an alternative to the standard path integral, and it is potentially useful also to systematically improve on numerical approaches based on the restricted Boltzmann machine architecture.


翻译:我们开发了一种建设性的方法,以产生代表一大批多体型的拉蒂斯·汉密尔顿人的确切地面状态的人工神经网络。 它基于深波兹曼机器结构,其中两层隐藏的神经元介质在可见层自由物理度之间的量子相关关系层。 这种方法复制了精确的想象时汉密尔顿进化过程, 并且完全是决定性的。 反过来, 地面各州的紧凑和精确的网络表达方式是在没有对网络参数进行随机优化的情况下获得的。 神经元的数量随着系统大小和全部想象时间而以线性方式增长。 物理数量可以通过物理和神经自由度的抽样配置来衡量。 我们通过实施高效的取样为横跨场的Ising和Heisenberg模型提供了具体实例。 作为许多体型量子系统的缩写、 典型代表, 我们的方法是标准路径的组合, 并且可能有用, 根据有限的Boltzmann机器结构系统地改进数字方法。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员