We develop a constructive approach to generate artificial neural networks representing the exact ground states of a large class of many-body lattice Hamiltonians. It is based on the deep Boltzmann machine architecture, in which two layers of hidden neurons mediate quantum correlations among physical degrees of freedom in the visible layer. The approach reproduces the exact imaginary-time Hamiltonian evolution, and is completely deterministic. In turn, compact and exact network representations for the ground states are obtained without stochastic optimization of the network parameters. The number of neurons grows linearly with the system size and total imaginary time, respectively. Physical quantities can be measured by sampling configurations of both physical and neuron degrees of freedom. We provide specific examples for the transverse-field Ising and Heisenberg models by implementing efficient sampling. As a compact, classical representation for many-body quantum systems, our approach is an alternative to the standard path integral, and it is potentially useful also to systematically improve on numerical approaches based on the restricted Boltzmann machine architecture.
翻译:我们开发了一种建设性的方法,以产生代表一大批多体型的拉蒂斯·汉密尔顿人的确切地面状态的人工神经网络。 它基于深波兹曼机器结构,其中两层隐藏的神经元介质在可见层自由物理度之间的量子相关关系层。 这种方法复制了精确的想象时汉密尔顿进化过程, 并且完全是决定性的。 反过来, 地面各州的紧凑和精确的网络表达方式是在没有对网络参数进行随机优化的情况下获得的。 神经元的数量随着系统大小和全部想象时间而以线性方式增长。 物理数量可以通过物理和神经自由度的抽样配置来衡量。 我们通过实施高效的取样为横跨场的Ising和Heisenberg模型提供了具体实例。 作为许多体型量子系统的缩写、 典型代表, 我们的方法是标准路径的组合, 并且可能有用, 根据有限的Boltzmann机器结构系统地改进数字方法。