Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.
翻译:量子机器学习预计将是近期量子装置的首批可能的一般用途应用之一。古典机器学习最近的一项重大突破是基因对抗性训练的概念,在这个概念中,歧视者模型的梯度被用来训练单独的基因化模型。在这项工作和一份配套文件中,我们将对抗性训练扩大到量子领域,并展示如何利用量子电路建立基因对抗性网络。此外,我们还展示了如何用另一种量子电路来计算梯度 -- -- 基因对抗性网络训练的一个关键要素 -- -- 。我们举了一个简单实用的电路 ARazz 的例子,以模拟量子机器学习模型,并进行简单的数字实验,以证明量子基因对抗性网络可以成功培训。