The deployment of Deep Learning (DL) models is still precluded in those contexts where the amount of supervised data is limited. To answer this issue, active learning strategies aim at minimizing the amount of labelled data required to train a DL model. Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary. These techniques are theoretically sound, but an understanding of the selected samples based on their content is not straightforward, further driving non-experts to consider DL as a black-box. For the first time, here we propose a different approach, taking into consideration common domain-knowledge and enabling non-expert users to train a model with fewer samples. In our Knowledge-driven Active Learning (KAL) framework, rule-based knowledge is converted into logic constraints and their violation is checked as a natural guide for sample selection. We show that even simple relationships among data and output classes offer a way to spot predictions for which the model need supervision. The proposed approach (i) outperforms many active learning strategies in terms of average F1 score, particularly in those contexts where domain knowledge is rich. Furthermore, we empirically demonstrate that (ii) KAL discovers data distribution lying far from the initial training data unlike uncertainty-based strategies, (iii) it ensures domain experts that the provided knowledge is respected by the model on test data, and (iv) it can be employed even when domain-knowledge is not available by coupling it with a XAI technique. Finally, we also show that KAL is also suitable for object recognition tasks and, its computational demand is low, unlike many recent active learning strategies.


翻译:在监督数据数量有限的情况下,仍然无法部署深学习(DL)模型。为了回答这一问题,积极的学习战略旨在最大限度地减少培训DL模型所需的贴标签数据数量。大多数积极战略以不确定的样本选择为基础,甚至往往局限于靠近决定边界的样本。这些技术在理论上是健全的,但根据内容对选定样本的理解并不简单,进一步促使非专家将DL视为黑箱。我们第一次提出不同的做法,考虑到共同域知识并使非专家用户能够用较少样本来培训模型。在我们的知识驱动主动学习(KAL)框架内,基于规则的知识被转换为逻辑限制,其违反情况被检查为选择样本的自然指南。我们表明,数据与产出班之间即使简单的关系也能够发现模型需要监督的预测。拟议的方法(i)在平均F1评分方面比许多积极的学习战略要差,特别是在域知识丰富的情况下。此外,我们从经验学角度上证明(ii)基于规则的知识被转换为逻辑约束性数据测试,而最近的数据测试则是用模型来证明(rental droal dreal ex) 。我们用的是,在使用它所提供的数据分析模型时,最后用它就是用来证明数据测试。(ii) 数据是用来证明它所提供的数据是如何使用它所提供的数据分析。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
126+阅读 · 2020年9月6日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
126+阅读 · 2020年9月6日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员