Many sectors nowadays require accurate and coherent predictions across their organization to effectively operate. Otherwise, decision-makers would be planning using disparate views of the future, resulting in inconsistent decisions across their sectors. To secure coherency across hierarchies, recent research has put forward hierarchical learning, a coherency-informed hierarchical regressor leveraging the power of machine learning thanks to a custom loss function founded on optimal reconciliation methods. While promising potentials were outlined, results exhibited discordant performances in which coherency information only improved hierarchical forecasts in one setting. This work proposes to tackle these obstacles by investigating custom neural network designs inspired by the topological structures of hierarchies. Results unveil that, in a data-limited setting, structural models with fewer connections perform overall best and demonstrate the coherency information value for both accuracy and coherency forecasting performances, provided individual forecasts were generated within reasonable accuracy limits. Overall, this work expands and improves hierarchical learning methods thanks to a structurally-scaled learning mechanism extension coupled with tailored network designs, producing a resourceful, data-efficient, and information-rich learning process.


翻译:如今,许多部门需要准确和一致的预测,才能有效运作。否则,决策者将利用对未来的不同观点来规划未来,从而导致部门之间决策不一致。为了确保各等级之间的一致性,最近的研究提出了等级学习,一个对一致性有了解的等级递减者利用机器学习的动力,其原因是基于最佳调和方法的定制损失功能。虽然勾勒了有希望的潜力,但结果表现出不协调的性能,即一致性信息只改善一个环境的等级预测。这项工作提议通过调查由等级结构的地形结构所启发的定制神经网络设计来克服这些障碍。结果揭示,在数据有限的情况下,结构模型能够发挥整体的最佳作用,并展示出准确性和一致性预测业绩的连贯一致性信息价值,条件是个人预测是在合理的准确限度内产生的。总体而言,这项工作扩大并改进了等级学习方法,因为结构化学习机制的扩展加上定制的网络设计,产生了资源丰富、数据效率和信息丰富的学习过程。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员