Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks, supervised approaches have achieved encouraging performance but require a high volume of detailed frame-level annotations. We present a fully automatic and unsupervised approach for segmenting actions in a video that does not require any training. Our proposal is an effective temporally-weighted hierarchical clustering algorithm that can group semantically consistent frames of the video. Our main finding is that representing a video with a 1-nearest neighbor graph by taking into account the time progression is sufficient to form semantically and temporally consistent clusters of frames where each cluster may represent some action in the video. Additionally, we establish strong unsupervised baselines for action segmentation and show significant performance improvements over published unsupervised methods on five challenging action segmentation datasets. Our approach also outperforms weakly-supervised methods by large margins on 4 of these datasets. Interestingly, we also achieve better results than many fully-supervised methods that have reported results on these datasets. Our code is available at https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH


翻译:行动区隔是指在视频中推断出在视频中具有内在一致性的视觉概念的界限,这是许多视频理解任务的重要要求。对于这一任务和其他视频理解任务来说,受监督的方法已经取得了令人鼓舞的业绩,但需要大量的详细框架说明。我们展示了一种完全自动和不受监督的方法,在不需要任何培训的视频中分割行动。我们的建议是一种有效的时间加权等级分类算法,它可以将视频的语义一致框架组合在一起。我们的主要发现是,一个带有最近距离邻居图的视频,考虑到时间进展,就足以形成语义性和时间性一致的一组框架,其中每个组组在视频中可以代表一些行动。此外,我们为行动区隔设置了强大的不受监督的基线,并展示了在5个具有挑战性的行动区隔数据集上公布的未经监督的方法方面的显著业绩改进。我们的方法也比这些数据集中4个大边距的受监管的方法差强。有意思的是,我们还取得了比许多完全受监督的方法更好的结果,而许多完全受监督的一组组群隔开的一组框架,其中每个组群别可能代表了这些数据集/FINC/FINSAR/FINSAR/FIDSARSAR/FAR可以使用我们的代码。

0
下载
关闭预览

相关内容

层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员