Visual and audio modalities are highly correlated, yet they contain different information. Their strong correlation makes it possible to predict the semantics of one from the other with good accuracy. Their intrinsic differences make cross-modal prediction a potentially more rewarding pretext task for self-supervised learning of video and audio representations compared to within-modality learning. Based on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-supervised method that leverages unsupervised clustering in one modality (e.g., audio) as a supervisory signal for the other modality (e.g., video). This cross-modal supervision helps XDC utilize the semantic correlation and the differences between the two modalities. Our experiments show that XDC outperforms single-modality clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy among self-supervised methods on multiple video and audio benchmarks. Most importantly, our video model pretrained on large-scale unlabeled data significantly outperforms the same model pretrained with full-supervision on ImageNet and Kinetics for action recognition on HMDB51 and UCF101. To the best of our knowledge, XDC is the first self-supervised learning method that outperforms large-scale fully-supervised pretraining for action recognition on the same architecture.
翻译:视觉和听觉模式是高度关联的, 但是它们包含不同的信息。 它们之间的紧密关联使得能够预测一个来自另一个的语义的语义, 并且准确性很高。 它们的内在差异使得跨模式预测成为自我监督学习视频和音频演示而不是内部学习的更有益处的借口任务。 基于这一直觉, 我们提议跨模式深层集聚( XDC), 这是一种新型的自我监督方法, 利用一种模式( 如音频) 的不受监督的集群作为另一种模式( 如视频) 的监督信号。 这种跨模式监督有助于 XDC 利用语言相关性和两种模式之间的差异。 我们的实验显示, XDC 超越了单一模式组合和其他多模式变体。 XDC 在多种视频和音频基准上实现了自我监督方法之间的最新准确性。 最重要的是, 我们的视频模型模型先于大型无标签数据( 如视频、视频、视频、视频、视频、视频、视频和视频)前导的模型, 大大超越了在图像网络上经过全面监督的模型, X-DC 和对大规模学习方法的自我认知的自我识别模型, 是对H51 的首次的自我确认。